Getting Smarter at the Edge

With over 2 billion people around the world now users of a smartphone, we have more computing power than ever right at our fingertips than ever before. Our cars, houses, factories, cities, etc. are all becoming smarter too. With all of this distributed computing power and applications, we’re producing and consuming vast quantities of data … but are we using this data effectively?

As systems grow in complexity and the number of connected devices/sensors increases, so too does the sheer volume of data produced. That is a lot of (potentially sensitive) data to be sending to the cloud to be analyzed for faults/abnormalities. Then there is the issue of network connectivity: what if the network goes down? What if the latency is too high for the safety/mission/business critical scenario? There are many single points of failure in a cloud-reliant solution. Local computing is therefore still vitally important to many industries, but this data still has value. Aggregating this data at the edge for cloud analysis is one way in which companies can derive massive business benefits without overburdening network communications. This aggregate data can be analyzed for insights, and results deployed back down to the edge.

Automation is an area in which edge computing plays a vital role: when you need an action to be taken immediately should something happen; you require a low-latency instantaneous response. Running edge based analytics enables companies to perform reactive, predictive, and prescriptive actions in real-time with no bandwidth costs or WAN networking issues to worry about. Automating decisions at the edge enables geographically isolated systems to benefit from big-data analytics without requiring high-bandwidth, low-latency connections to the cloud.

Edge computing is enabling many areas of high interest: self-driving cars, factory automation, autonomous drones, predictive maintenance, and the list keeps growing. Unlocking the potential of the ever-growing volume of data being produced means greater efficiency, more effective and timely actions, and valuable insights.

The recently announced Vortex Edge PMQ solution utilizes the power of PrismTech’s Vortex data-connectivity software, ADLINK’s ruggedized industrial hardware, and IBM’s advanced Predictive Maintenance and Quality analytics. Vortex Edge PMQ provides an edge analytics solution designed for Industrial Internet of Things environments where cloud computing access may be limited or otherwise not desired.

For a more detailed look at Vortex Edge PMQ and implementation examples, visit http://www.prismtech.com/vortex/vortex-edge-pmq

Vortex 2.0 is now available to download

PrismTech is pleased to announce that Vortex 2.0, a major upgrade of its award winning Intelligent Data-Sharing Platform is now generally available for evaluation and purchase. The Vortex platform provides the most comprehensive Industrial IoT solution for integrating devices, real-time high performance edge-based Fog networks and Cloud systems.

Vortex 2.0 delivers significant benefits in terms of support for Fog computing, improved robustness, security, platform support and ease of use. Vortex 2.0 includes the following new functionality:

  • Vortex OpenSplice 6.6 – includes new features such as Google Protocol Buffer (GPB) support, latest ISO C++ API, dynamic network partitions, Durability Service optimizations, coherent updates – full PresentationQoSPolicy support,  RnR Service – split file recording and Python scripting support for OpenSplice Tester
  • Vortex Fog 1.x – a new addition to the platform providing secure interest based routing of real-time information between UDP (multicast and unicast) enabled edge networks and TCP endpoints, enabling Device-Fog, Fog-Fog and Fog-Cloud connectivity
  • Vortex Cloud 1.3 – includes new Boundary Security solution
  • Vortex Lite 2.0 – latest ISO C++ API, enhanced Durability QoS, support for Windows 10, Mac OS X10.1
  • Vortex Insight 1.2 – usability improvements

Vortex is ideally suited for mission-critical distributed and Industrial Internet of Things (IIoT) applications. It is based on the Data Distribution Service (DDS) for Real-time Systems open standard and builds on proven technologies to provide an efficient solution for Internet scale real-time data sharing. Vortex is a crucial enabler for systems that have to reliably and securely deliver high volumes of data with stringent end-to-end qualities-of-service (QoS); for IIoT systems Vortex delivers the right information to the right place at the right time.

Evaluate Now

Beyond M2M to Enterprise IoT

Figure 1. A Layered Enterprise IoT System Architecture
Figure 1. A Layered Enterprise IoT System Architecture

Applications running on edge-devices, gateways, enterprise servers, cloud services and mobiles are all valuable data sources and sinks in an IoT world.  But new software platforms are needed to connect and leverage all these sub-systems to maximize the business value-add of Enterprise IoT.

For several years, M2M platforms have provided reasonable solutions for connecting machines to cloud services (actually it should be M2C, as M2M platforms generally do not support peer-to-peer device communications).  But these platforms have struggled to create large markets or provide strategic enterprise-wide solutions.  They have mostly been restricted to providing vertical/tactical applications — in effect self-contained ‘stovepipe’ systems.

But to fully exploit the potential of the IoT, data must be free to flow to wherever in the system it can add value, e.g. between ‘edge’ devices for control purposes, to gateways for data aggregation/ingestion and local analytics, to cloud-based applications for Big Data analytics, to enterprise systems for OT/IT alignment and supply-chain integration, to mobiles for on-demand data delivery to employees (see Figures 1 and 2).  The promise of Enterprise IoT is the new value created through ubiquitous data availability (and its processing by applications into actionable insights), but this means a new generation of platforms is required to provide the data-connectivity to support a new generation of distributed IoT applications.

One of the biggest differences between traditional M2M and Enterprise IoT systems is that ‘horizontal’ as well as ‘vertical’ data-flow must be supported.  Vertical silos of data do not provide the potential to add value beyond a specific sub-system, so a fundamental feature of next-generation IoT platforms will be a data-connectivity layer that supports system-wide data-delivery as required: the right data, in the right place, at the right time, system-wide.

There are many potential ways (control, analytics, dashboards, event processing, mobile apps, etc.) to exploit all this newly accessible IoT data, but it needs to be delivered to the appropriate application in a timely manner wherever in the system that application may reside (on an edge device, gateway, enterprise server, tablet, or in the cloud).  Only then can the data be converted into new ‘actionable insights’ and thus new business value.

Figure 2. End-to-end IoT System Functionality: Providing intelligent data-connectivity for end-to-end systems embracing Things, gateways, enterprise servers, cloud services, mobiles, etc. to support Enterprise IoT solutions.
Figure 2. End-to-end IoT System Functionality: Providing intelligent data-connectivity for end-to-end systems embracing Things, gateways, enterprise servers, cloud services, mobiles, etc. to support Enterprise IoT solutions.

To provide this underlying capability, a data-connectivity layer needs to be deployed across all nodes the in the system — at least all the nodes that are required to share data (publish and/or subscribe).  An enterprise version of Twitter for Things, in effect.

In simple terms, the diagrams in Figures 3 and 4 show, respectively, how this layer can be deployed both in the cloud (to support cloud services) and on devices (Things, servers, PCs, mobiles, etc.).  They also show potential sources of the applications the platform connects (end-user developers, ISVs, SIs, OEMs).

Figure 3. IoT Cloud Services Environment: PrismTech's Vortex provides the intelligent data-connectivity between the functional components within a cloud PaaS offering for Enterprise IoT solutions.
Figure 3. IoT Cloud Services Environment: PrismTech’s Vortex provides the intelligent data-connectivity between the functional components within a cloud PaaS offering for Enterprise IoT solutions.
Figure 4. IoT Edge-Device Environment: Similar to the PaaS offering, PrismTech's Vortex provides the intelligent data-connectivity between functional components in an IoT device and other devices, sub systems and cloud services for Enterprise IoT solutions.
Figure 4. IoT Edge-Device Environment: Similar to the PaaS offering, PrismTech’s Vortex provides the intelligent data-connectivity between functional components in an IoT device and other devices, sub systems and cloud services for Enterprise IoT solutions.

[Note that the data-connectivity layer supports not only inter-node data-sharing, but also data-sharing between the application components of the IoT platform itself, i.e. inter-operability between platform services (such as IDEs, edge-device management, API management, analytics engines, etc.) as well as between Things].

To read the full article, visit www.smartindustry.com

Vortex Cloud Getting Beyond Cloud Messaging Live Webcast

Date: 18th March 2015
Location: Online

Why Attend:

  • Understand how Vortex Cloud differs from mainstream Cloud Messaging technologies such as Azure Service Bus, Amazon Simple Queuing and Notification Service, Google Cloud Messaging, etc.
  • Learn about the key features provided by Vortex Cloud
  • Learn how to build and deploy Internet Scale native and web applications with Vortex Cloud

Abstract:

Cloud Messaging is a key building block at the foundation of any Internet Scale native and web application. PrismTech’s Vortex Cloud provides an innovative solution to address the problems of efficiently and securely distributing data and raising events on an Internet Scale.

This webcast will (1) position Vortex Cloud with respect to some of the mainstream Cloud Messaging implementations, such as those found as part of the Microsoft Azure Platform, Amazon EC2, and the Google Cloud Platform (2) explain the unique features provided by Vortex Cloud, and (3) teach you how to get started writing native or web applications that leverage Vortex Cloud.

The webcast will last approximately one hour.

Webcast Presenter:

Angelo Corsaro, Ph.D. is Chief Technology Officer (CTO) at PrismTech where he directs the technology strategy, planning, evolution, and evangelism. Angelo leads the strategic standardization at the Object Management Group (OMG), where he co-chairs the Data Distribution Service (DDS) Special Interest Group and serves on the Architecture Board. Angelo is a widely known and cited expert in the field of real-time and distributed systems, middleware, and software patterns, has authored several international standards and enjoys over 10+ years of experience in technology management and design of high performance mission- and business-critical distributed systems. Angelo received a Ph.D. and a M.S. in Computer Science from the Washington University in St. Louis, and a Laurea Magna cum Laude in Computer Engineering from the University of Catania, Italy.

Introducing Vortex Lite Webcast

Date: 27 January 2015

Why Attend:

  • Learn about what makes Vortex Lite the right DDS implementation for resource constrained embedded IoT devices and environments,
  • Understand how some of the features provided by Lite simplify application development and ease porting across computing / networking stacks,
  • Learn about Lite’s performance characteristics.

Abstract:

Vortex Lite brings Data Distribution Service (DDS) connectivity to resource constrained embedded systems. As a first class citizen of the Vortex platform it can be used for peer-to-peer fog / edge computing between embedded devices as well as gateways and for very efficient device to cloud data sharing. Vortex Lite has been designed with efficiency and portability in mind. This makes it the fastest DDS implementation on the market on enterprise grade hardware and the most lightweight on embedded targets. Likewise its architecture makes it highly portable across computing / networking stacks.

This webcast will introduce Vortex Lite, provide an overview of its architecture, its design choices as well as highlighting its performance characteristics. The webcast will also explain the role played by Lite within the Vortex family and how it can be used for both device-to-device (fog / edge computing) as well as device-to-cloud data sharing.

The webcast will last approximately one hour.

Webcast Presenter:

Angelo Corsaro, Ph.D. is Chief Technology Officer (CTO) at PrismTech where he directs the technology strategy, planning, evolution, and evangelism. Angelo leads the strategic standardization at the Object Management Group (OMG), where he co-chairs the Data Distribution Service (DDS) Special Interest Group and serves on the Architecture Board. Angelo is a widely known and cited expert in the field of real-time and distributed systems, middleware, and software patterns, has authored several international standards and enjoys over 10+ years of experience in technology management and design of high performance mission- and business-critical distributed systems. Angelo received a Ph.D. and a M.S. in Computer Science from the Washington University in St. Louis, and a Laurea Magna cum Laude in Computer Engineering from the University of Catania, Italy.